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The effect of acoustic coupling on random and harmonic plate vibrations is studied using two numerical
models. In the coupled model, the plate response is obtained by integration of the nonlinear plate equation
coupled with the nonlinear Euler equations for the surrounding acoustic fluid. In the uncoupled model, the
nonlinear plate equation with an equivalent linear viscous damping term is integrated to obtain the response of
the plate subject to the same excitation field. For a low-level, narrow-band excitation, the two models predict
the same plate response spectra. As the excitation level is increased, the response power spectrum predicted by
the uncoupled model becomes broader and more shifted toward the high frequencies than that obtained by the
coupled model. In addition, the difference in response between the coupled and uncoupled models at high
frequencies becomes larger. When a high intensity harmonic excitation is used, causing a nonlinear plate
response, both models predict the same frequency content of the response. However, the levels of the harmonics
and subharmonics are higher for the uncoupled model. Comparisons to earlier experimental and numerical
results show that acoustic coupling has a significant effect on the plate response at high excitation levels. Its
absence in previous models may explain in part the discrepancy between predicted and measured responses.

I. Introduction

T is well known in structural dynamics that linear plate
theory cannot be used to accurately predict structural re-
sponses at high excitation levels. In an attempt to overcome
this weakness, several nonlinear plate models have been pro-
posed. The nonlinearities introduced in the various models can
be classified in two categories: geometric nonlinearity or mate-
" rial nonlinearity. The nonlinear model based on the geometric
nonlinearity, also referred to as the large deflection model, has
been extensively used in the literature.!"'® Although this model
gives better predictions than those of the linear theory, it
overestimates the frequency content or ‘‘broadening” of the
response spectrum at high excitation levels.

To further improve the predictions of the nonlinear analy-
sis, several damping models have been studied. Linear, nonlin-
ear, and viscous damping are among the models used.!!-1>
Prasad and Mei'%!” used nonlinear damping in their large
deflection model. A set of modal equations of the Duffing
form coupled in the nonlinear stiffness and uncoupled in the
nonlinear damping was derived. An approximate solution was
obtained for rms quantities (such as displacement and strain)
and spectral density functions by the equivalent linearization
method. The nonlinear damping was found to contribute to
the broadening of the power spectra at high excitation levels.
However, Moyer!® and Reinhall and Miles!® showed that the
method of equivalent linearization gives inaccurate response
spectra for large deflections. The broadening of the response
spectrum at high excitation levels was found to be caused by
the nonlinear stiffness.!® Robinson and Mei?® studied the in-
fluence of nonlinear damping on panels’ random response
using a time domain simulation. They found that the nonlin-
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ear damping was responsible for a narrowing of the nonlinear
response power spectrum.

Recently, Robinson et al.?! used a finite element method to
integrate the nonlinear plate equations with an equivalent
linear viscous damping term to study the linear and nonlinear
responses of a plate to a narrow-band random excitation.
Their results were in good agreement with experiments for low
excitation levels. However, for high excitation levels, the
model overpredicted the broadening of the response spectrum
and predicted higher response levels at high frequencies.

In most structural dynamics analyses, there is little discus-
sion about the effect of the surrounding acoustic fluid on the
response of a structure to a given excitation field. Frendi et
al.?22? showed that a strong coupling between plate vibration
and the surrounding flowfields exists at high excitation levels.

In this paper, an attempt is made to explain the discrepan-
cies between the experimental and numerical results obtained
by Robinson et al.?! Using the model developed by Frendi et
al.?? and changing the configuration of the compuitational
domain to match that of the experiments, the response of a
flexible plate to both a narrow-band random excitation and a
harmonic excitation is studied using two models. One model
accounts for the full nonlinear coupling to the surrounding
fluid. The other replaces the nonlinear coupling by an equiva-
lent linear viscous damping on the plate.

The remainder of the paper is organized as follows. In Sec.
I1, a detailed description of the analytical model is given.
Section ITI describes the numerical techniques, and the results
are discussed in Sec. IV. Finally, the conclusions are given in
Sec. V.

II. Formulation of the Model

As shown in Fig. 1, the computational domain is composed
of three regions. The acoustic fluid in the cavity region (or top
domain) is separated from that in the open space region (or
bottom domain) by a flexible plate clamped between two rigid
plates. Acoustic disturbances are introduced at the left
boundary of the top domain and propagate over the rigid and
flexible surfaces. There is no meanflow on either side of the
flexible plate. The governing equations in the acoustic fluid
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Fig.1 Computational domain.

regions are the two-dimensional, compressible, nonlinear Eu-
ler equations. In a cartesian coordinate system, x and y, these
equations can be written in conservation form as

at  ax  dy M

where Q is the vector (p, pu, pv, e)7, p is the density, pu and
pv are the x and y momenta, respectively, and e is the total
energy per unit volume given by

e = Yap(u? + v?) + pe, T )

In Eq. (1), the functions F and G are
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In addition to Eq. (1), an ideal gas state equation is used
p =pRT C))

where p is the pressure, R is the gas constant, and T is the
temperature.

The motion of the plate is approximated by the one-dimen-
sional equation given by

Fw 3w Fw aw
N T S ([ + T S = A, 5
ax* a2 TPl G it

where w is the plate transverse deflection, p, is the mass per
unit volume of the plate, and 4 is the plate thickness. The total
viscous damping is the sum of the structural damping I'y and
the acoustic damping T',. When the plate vibration is coupled
to the surrounding acoustic fluid, T, =0. In Eq. (5),
D = Eh3/12(1 — »?) is the stiffness of the plate, with E being
the modulus of elasticity and » the Poisson ratio of the plate
material. The coefficient N, in Eq. (§) is given by

Eh XO+L a 2
N, = —S Y ax ©)
2L )y, ox

which represents the tension created by stretching of the plate
due to bending. In Eq. (6) x; is the origin of the flexible plate
and L its length. The forcing term on the right-hand side of
Eq. (5) is

Ap=p —-p* 0]

where p* and p ~ are the pressures on the surfaces above and
below the plate, respectively. When acoustic coupling is ne-
glected, the plate response is obtained by neglecting p~ in
Eq. (5) and using the same p* at the plate center as that
obtained by integration of the Euler equations. This is done to
reproduce the results obtained by Robinson et al.?!
Equations (1-7) are written in a nondimensional form using
the following reference quantities for the different variables:
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The notation (-, -)_, is used to represent the reference quan-
tity of the variables in parentheses. The various freestream fluid
properties are those of air at sea level conditions, which are
temperature T, = 519°R, density po, = 1.147 X 10~7 1bf -s%/in.*%,
pressure p., = 14.7 psi, and sound speed ¢, = 13392 in./s. The
specific heat at constant volume is ¢, = 6.1776 X 10° in.2/(s2°R),
the ratio of specific heats is v = ¢, /¢, = 1.4, and the reference
length is /s = 12.0 in.

(P, e)ref = pooéi (8)

II1. Method of Solution

The unsteady Euler equations [Eq. (1)] are solved using an
explicit finite difference scheme. The scheme, which is a gener-
alization of MacCormack’s scheme obtained by Gottlieb and
Turkel,* is fourth-order accurate in space and second-order
accurate in time. The numerical scheme, applied to a one-di-
mensional equation of the form

ou OoF

— = 9
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consists of a predictor step given by
* n At
uf =ul + ——(=TF, +8F, 1 — Fi.») (10)
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followed by a corrector step of the form
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6Ax

ufi+! =‘/z[u?‘+u,—"+ (7FF —8F*_, +F;‘12)} (11)
In those equations, the subscript / denotes the spatial grid
point and the superscript # the time level. The fourth-order
accuracy is obtained by alternating the previous scheme with
its symmetric variant.?* Operator splitting is used to reduce the
two-dimensional problem to a sequence of one-dimensional
problems. If L, and L, denote the solution operators for the
one-dimensional x and y problems, then the solution to Eq. (1)
is obtained by

Q"*2=L,L,L,L,Q" (12)

Further details regarding the method and the advantage of
fourth-order schemes can be found in Bayliss et al.?

The boundary conditions employed on the rigid and flexible
surfaces for the Euler equations are

v=0 T=T, 13)
over the rigid surfaces, and

aw

V=" T=T, (14)
over the flexible surface. In Egs. (13) and (14) T, is a specified
wall temperature; in this paper it is taken to be the freestream
temperature T.,. The x-component of the velocity (u) is ob-
tained through linear extrapolation from the interior of the
computational domain over both the rigid and flexible surfaces.
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The pressure boundary conditions are as follows: over the
rigid surfaces where the time rate of change of the normal
momentum is zero, the pressure is calculated using the normal
momentum equation by simply imposing the normal gradient
of the sum of pressure and vertical momentum flux to be zero
[8/8y(p + pv?) = 0]. Over the flexible part of the surface, a
linear extrapolation from the interior of the computational
domain is used. At the left boundary of the top domain, a
nondimensional perturbation velocity is specified & as

i1=€eR() or 7 = e sin(w?) (15)
where R(?) represents a narrow-band random excitation, and
i1 is a nondimensional perturbation velocity. In Eq. (15), € is
the peak amplitude of the disturbance for the harmonic case
(with w being the frequency), and is an rms amplitude in the
random case. Using the routine RNNOF of the IMSL library,2®
Gaussian random data is generated; then, using a quadratic
narrow-band filter, the data is filtered to give the desired
input. The pressure and vertical velocity (v) are obtained by
linear extrapolation from the interior of the computational
domain, and the temperature is imposed to be constant
(T =T,). The remaining nonphysical boundary conditions
(top domain right boundary, bottom domain right, left, and
bottom boundaries) are derived using the method of charac-
teristics.?7-2

The plate equation is integrated using an implicit finite
difference method for structural dynamics developed by Hoff
and Pahl.?® The calculation of N, was done using Simpson’s
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Fig. 2 Experimental and simulated power spectra of the strain for an
overall sound pressure level of 140 dB (Ref. 21).
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Fig. 3 Experimental and simulated power spectra of the strain for an
overall sound pressure level of 160 dB (Ref. 21).
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Fig. 4 Comparison of the power spectra of the center plate displace-
ment obtained by the coupled and uncoupled models for a maximum
random excitation level of 120 dB.

rule of integration. The boundary conditions used to solve the
plate equation are those for a clamped plate

aw 0 ¢
w I al

The coupling between the acoustic fluid and the flexible
plate is performed as follows. The method used in the fluid is
explicit. Thus the pressure fields in the top and bottom do-
mains are updated by using the value of dw /¢ at the previous
time step as a boundary condition for the Euler equations.
Then, using the new values of p * and p ~, the plate equation
is integrated to obtain the new vertical velocity dw/d¢. This
procedure is repeated at every time step.

For every coupled calculation, the time history of the pres-
sure at the center of the flexible plate in the top domain is
stored to be used as input for the equivalent uncoupled case.
This procedure was done to match the numerical used by
Robinson et al.?!

The use of Eq. (5) to approximate the motion of the plate is
justified by Eqs. (15) and (16), which indicate that the load is
uniform in the spanwise direction [Eq. (15)] and that the plate
is clamped only in the streamwise direction (x-direction) [Eq.
(16)]. Therefore, the motion of the plate is dominated by the
streamwise modes.

X =X Xo+ L (16)

IV. Results and Discussion

The results presented in this paper are obtained for a flex-
ible plate having the following properties: stiffness
D =1095.6 Ibf -in., mass per unit area p,h =2.21 X 1073
1bf - s2/in.3, and a Poisson ratio » = 0.3. Two values of total
viscous damping (I'; + I',) are used: 2.5 X 10~° 1bf-s/in.}
used in the fully coupled calculation (where I', =0) and
5 x 10~* Ibf - s/in.? used in the uncoupled calculation. These
two values are chosen such that the two calculations predict
the same response for low-intensity excitations (linear vibra-
tion regime). The plate is 15 in. long, 11 in. wide, and 0.13 in.
thick. The first natural frequency of the plate is 112 Hz. The
top domain of Fig. 1 is 12 in. high in the y-direction and 120
in. long in the x-direction, and the number of computational
points used are 101 and 181 in each direction, respectively.
The bottom domain is 120 in. long in both directions with 161
points used in each direction.

The power spectra shown here are for the center plate
displacement response and the pressure on either side of the
plate center. Also, typical instantaneous pressure distributions
are shown for both the top and bottom domains.

A. Previous Experimental and Numerical Results

At first the results obtained in Ref. 21 are summarized.
Figure 2 shows the power spectral density of the strain ob-
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Fig. 5 Comparison of the power spectra of the center plate displace-
ment obtained by the coupled and uncoupled models for a maximum
random excitation level of 140 dB.
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Fig. 6 Power spectra of the surface pressure on both sides of the
plate center.

tained both experimentally and numerically for a narrow-band
excitation sound pressure level of 140 dB. The figure shows
that the power spectrum obtained from the simulation is in
good agreement with that given by the experiment near the
fundamental frequency (112 Hz), where the measured strains
are within the sensitive range of the strain gages. Away from
the fundamental frequency, the measured strains are small
compared with the sensitivity, which is approximately 1.0
u-strain squared per Hz, and therefore not very accurate. As
the sound pressure level is increased to 160 dB, Fig. 3, the
simulation overpredicts the broadening of the spectrum and
the response at high frequencies. It is important to restate that
an equivalent linear viscous damping was used in the plate
model, and that the nonlinear coupling to the surrounding
acoustic fluid was neglected.

B. Current Model
1. Random Excitation

To obtain a pressure input spectrum similar to that of the
experiments described earlier, the random data generated by
the IMSL routine RNNOF is filtered using a quadratic nar-
row-band filter of bandwidth 50 to 500 Hz. Figure 4 shows
that both the fully coupled and uncoupled models predict the
same displacement frequency response of the plate for a low-
intensity noise having a maximum sound pressure level of 120
dB. The spectrum obtained by the uncoupled model shows a
more pronounced peak at 560 Hz, which corresponds to a
natural frequency of the plate. The plate response is linear and
is dominated by the first mode. Because of the high cost in

CPU time of the coupled calculations, the time histories of the
various quantities were not long enough to give smoother
power spectra.

Increasing the noise intensity to a maximum sound pressure
level of 140 dB leads to a nonlinear plate response. The fre-
quency content of the response shifts toward higher frequen-
cies and the spectrum broadens, as shown by Fig. 5. However,
the shift and the broadening are different for the two models.
The power spectrum predicted by the uncoupled model shows
a greater shift toward high frequencies and more broadening
than that predicted by the coupled model. The plate response
at high frequencies is also higher when the uncoupled model is
used. The difference between the coupled and uncoupled
power spectra is similar to that observed earlier between exper-
iments and simulation (see Fig. 3). This result indicates that
acoustic coupling at high sound pressure levels is important
for the accurate prediction of the plate response.

Figure 6 shows the power spectra of the pressure on both
sides of the plate center. Notice that the pressure on the top
surface is dominated by the input pressure, whereas the pres-
sure on the bottom surface is due to the vibration of the plate
and has, therefore, a power spectrum similar to that of the
response. An instantaneous pressure distribution in the top
domain is shown in Fig. 7. Because the input is random,
several peaks are observed in the pressure field superimposed
on a strong low frequency. The instantaneous pressure distri-
bution in the bottom domain shows the presence of one dom-
inant frequency corresponding to that of the plate response
(see Fig. 8).
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Fig. 7 Instantaneous pressure distribution in the top domain for a
maximum random excitation of 140 dB.
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Fig. 8 Instantaneous pressure distribution in the bottom domain for
a maximum random excitation of 140 dB.
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2. Harmonic Excitation

For an excitation frequency f = 112 Hz (corresponding to
the first mode of the plate) and an amplitude of 150 dB, the
plate response is nonlinear, as shown by Fig. 9. The power
spectra of the center plate displacement show several harmon-
ics and subharmonics characteristic of the nonlinear response.
For this excitation level, both the fully coupled and uncoupled
models predict the same response power spectrum. (Similar
results are obtained for lower dB levels.) This result is at-
tributed to the weak nonlinearity in the radiation field. Figure
10 shows the power spectra of the pressure on both sides of the
plate center. The power spectrum of the pressure on the top
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Fig. 9 Comparison of the power spectra of the center plate displace-
ment obtained by the coupled and uncoupled models for harmonic
excitation with a frequency of 112 Hz and a peak amplitude of 150 dB.
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Fig. 10 Power spectra of the surface pressure on both sides of the
plate center.
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Fig. 11 Power spectra of the top domain pressures at the inflow and
near the center of the flexible plate.
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Fig. 12 Comparison of the power spectra of the center plate dis-
placement obtained by the coupled and uncoupled models for har-
monic excitation with a frequency of 112 Hz and a peak amplitude of
165 dB.
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Fig. 13 Power spectra of the surface pressure on both sides of the
plate center.

surface shows a strong peak at the fundamental frequency
(112 Hz) and negligible harmonic content, indicative of weak
nonlinearity. The power spectrum of the radiated pressure on
the bottom surface is similar to the response power spectrum
with slightly stronger harmonics as should be expected, be-
cause the coupling between the plate vibration and the acous-
tic fluid is obtained through the vertical velocity. Due to
transmission loss, the level of the radiated pressure on the
bottom surface is 20 dB lower than that on the top surface.
The weak nonlinearity in the pressure field is further evi-
denced by Fig. 11, where the top domain power spectra of the
pressures at the inflow and near the center of the flexible plate
are shown. The two spectra are nearly identical except for a
negligible difference in the levels of the harmonics indicating
a weak nonlinearity in addition to the contribution of the
flexible plate.

Increasing the level of the excitation source to 165 dB leads
to a stronger contribution of the harmonics to the plate re-
sponse and much less contribution from the subharmonics (see
Fig. 12). This result is in agreement with earlier work,?? which
showed that the window to complex dynamics is very narrow
and that an increase in excitation level can lead to a more
stable system. The two models do not predict the same dis-
placement power spectrum of the plate. At high frequencies,
the uncoupled model predicts a higher level of the response
peaks. This prediction is similar to the random excitation case,
except that the peaks are not shifted. Figure 13 shows that the
pressure fields on both sides of the plate are nonlinear. Both
pressure power spectra show a strong harmonic content. The
nonlinearity in the top domain pressure field is shown in
Fig. 14. The levels of the harmonics on the flexible plate are



FRENDI AND ROBINSON: RANDOM AND HARMONIC PLATE VIBRATIONS 1997

180 ! !

Inflow

......... Plate Center

140

P(f), dB

100

60

0 500 1000 1500
Frequency, Hz

Fig. 14 Power spectra of the top domain pressures at the inflow and
near the center of the flexible plate.

higher due to both the plate vibrations and the nonlinear wave
propagation. The latter point can be seen on the figure
through the change in magnitude of the peak at 560 Hz and its
harmonic 1120 Hz. On the flexible plate, the 560 Hz peak
(which corresponds to a plate mode) is higher than its har-
monic (1120 Hz). However, at the inflow the two peaks are
nearly the same. This result indicates that although the 560 Hz
peak has decayed significantly, its harmonic has decayed only
slightly. This behavior is a characteristic of nonlinear wave
propagation. Similar results are obtained for the bottom do-
main pressure field.

V. Conclusions

Based on the results obtained in this paper, the following
conclusions can be made:

1) The coupling between the acoustic fluid with no mean-
flow and the plate vibration is not important at low excitation
levels for both random and harmonic excitations, as was re-
ported by Frendi et al.??

2) The acoustic coupling is important for accurate predic-
tion of the plate response at high excitation levels. The present
results show that the absence of acoustic coupling in earlier
models may be one of the reasons for the discrepancy between
numerical and experimental results. When acoustic coupling is
accounted for, less spectral broadening and frequency shift is
obtained. The plate response is lower at higher frequencies, a
result that is in agreement with experimental observations.?!

3) In the harmonic case, no shift in the peaks of the re-
sponse is obtained; however, the uncoupled model predicts
higher levels of the higher harmonics. The results also show
that the coupling between the acoustic fluid and the plate
vibration is important only when both the structural response
and the acoustic radiation are nonlinear, a result that is in
agreement with previous results.?
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